
Met voorwoord van Nobelprijswinnaar Gerard ‘t Hooft
I promised that I would write another blogpost (click here for the first) about how I cope with the whole quarantine situation, so here it is. The second part of my strategy is to do a lot of writing. That works very well for me, because it makes me feel less alone, as if I am interacting with those who read my texts.
But this strategy is not as easy as it seems. The moments I need company the most, the moments I am most lonely, are also the moments at which it is most difficult to put myself to work, to actually start writing. So this strategy only works in combination with something else: I need to plan my writing activity. On the evening before a writing day, before I go to bed, I try to come up with an idea about what I want to start writing about the next morning. Only that makes it possible for me to start writing even when I am feeling lonely or sad.
In the past few days I coped with the quarantine by translating the first chapter of my book about relativity theory into English:
It is often said that the beginning of the 20th century is an era in which physics has become too complicated for ordinary mortals. We have a clear intuition for the ideas of Newton and his contemporaries (often called classical physics), in which gravity explains why stones fall and the earth moves around the sun. This intuition comes to a sudden end when relativity theory and the theory of quantum mechanics appear.
In Newton’s physics, space and time are abstract but simple concepts, that can be measured with clocks and measuring sticks. Space and time enable us to understand the world around us, because they make it possible to describe any kind of physical change. But in the 20th century we no longer know which measuring sticks are straight and which clocks are synchronous, so it has become a challenge to understand what space and time are, which makes the transition from Newton’s to Einstein’s worldview seem like a radical transformation. In this book I will show that the transition from classical to modern physics is not as abrupt as it is often presented – Newton and Einstein are more alike than we think.
The classical Newtonian worldview is not as obvious or easy-to-understand as is usually assumed, because much interpretation is needed to get from Newton’s physics (his mathematical equations) to a coherent view of what ‘reality’ is like. When we try to find out what Newton’s formulas tell us about the world outside ourselves, we will see that the concepts that lie at the foundations of classical physics are the same as those on which early 20th century physics is built.
Gerard ‘t Hooft and Alice in Wonderland
A couple of years ago I was at a physics conference with a philosophical bend, a conference about the foundations of spacetime theories. During one of the coffee breaks I had a chat with the keynote speaker of the conference, the Nobel laureate Professor Gerard ‘t Hooft. We agreed on many things – the location of the conference, Varna, Bulgaria, was great, and the weather was perfect. Then he said something that really surprised me: he was not there for the philosophy of space and time. “Then what are you doing here?!” I asked him full of surprise. “I have a new theoretical toy-model for black holes, and I want to discuss that”, he said, shrugging his shoulders.
Gerard (we have become very good friends since then) is not the only physicist for whom the philosophy of space and time, and philosophy in general, is not the primary reason to visit a conference on physics. I find that difficult to grasp. Why are we interested in physics? Of course, we want technological advance, so we want to know how we can make new discoveries and which experiments are necessary for that, but we also want to find out something about the world – We want to understand the reality that exists independently of us and our experiments.
Physics gives us a model of reality outside of us, but that model does not say of itself whether it is a good model. It’s as if you’re trying to check a calculation that you made with a calculator by using the calculator itself. If the calculator made a mistake the first time, for example because of a loose key or because something went wrong in the factory when the calculator was manufactured, then probably the calculator will make the same mistake when checking the calculation. The physicist who wants to check whether their model of reality is a good model, is also checking their own calculations, just as the calculator.
The plight of the physicist is comparable to that of Alice in Wonderland. Alice wants to know whether she has grown after she drank from a small bottle and she tries to find out by holding her hand above her own head. That doesn’t work because she has no external point of reference, like a measuring stick. When physicists try to find out whether their model of reality is a good model, they are doing the same thing as Alice. They do not have an external point of reference, so the best they can do is hold their own hand above their heads.
Physics and its philosophy
Physics is the search for a mathematical model which describes the phenomena around us. New physics usually starts with observing something that cannot be explained, after which a hypothesis is formulated which explains the observations. The physicist then tries to come up with experiments that show that the hypothesis is true or false, or should be modified.
What is the philosophy of physics?
There are many difficulties with the picture of physics that I just described. What counts as an observation? How can we ever justify a general hypothesis on the basis of a finite number of observations? What is the nature of mathematics? These are questions about the philosophy of physics. On my blog I’m going to address these and similar questions, but here I’d like to discuss just one example of a topic in the philosophy of physics – determinism.
Determinism
The idea of determinism is that if we know all that there is to know about a physical system at one point in time – the position and velocity of all particles in the system – and we know the laws that tell us how the system changes, then we can calculate what is going to happen. As an example, think of a coin toss. We usually say that the probability of heads and tails are ½ because we have no reason to think otherwise.
But a strict believer in determinism might say something else. If we know exactly the situation when the coin was tossed, the position and velocity of all particles at that moment, we can use the laws of physics to calculate the outcome of the coin toss. The probability of an outcome is then either one or zero – it either happens, or it doesn’t. A physical model is deterministic if complete knowledge of the initial situation allows us to predict the outcomes with certainty, while a model that yields uncertainty about the outcomes is called indeterministic.
Sub-quantum theory
It is often stated that, since there is uncertainty in quantum theory, it must be the case that our reality is indeterministic. That conclusion is not justified, since the uncertainty in the quantum theory means only that quantum theory is indeterministic, and not the reality that it describes. It could be that there is some underlying theory that describes a deterministic reality, of which quantum theory is only an approximation. We do not have such a theory yet, but a minority of physicists believe that we will find a deterministic ‘sub-quantum theory’ in the future (e.g. the Cellular Automata version of quantum theory of Gerard ‘t Hooft).
Why should we care?
Why should we care about the philosophy of physics? If all we want is a better mathematical model, so that we can construct better cars and faster rockets, then why don’t we stick to physics itself? Why do we have to drag in philosophy?
Physics is the attempt to reshape our mathematical model so that it yields the best predictions, but questions about the model (or about different possible models) are philosophical questions. For example, when is a model a good model? When it is as accurate as possible, or when it is as broadly applicable as possible? Therefore, if it has to be decided where to invest money for scientific research, philosophical questions are important.
For me personally, there is a far more important reason: I’d like to understand reality as best as I can. Nothing can be known with absolute certainty, but the second best thing is that the philosophy of physics makes it possible for us to explore the limits of our own knowledge. Questions like “what is the nature of time and space?” and “what happened before the Big Bang?” are clearly connected to physics, but even questions involving our free will and the meaning of life are, in the end, questions in the philosophy of physics. Physics and philosophy are two sides of the same coin – both are applied logic.
[Thanks to Carlo Rovelli for proof-reading the text]
Because the number of Covid infections increased rapidly, the Dutch government has decided that the Netherlands should go into a ‘partial lockdown’. I fully understand why this is necessary, but that doesn’t mean that it doesn’t bother me. I live alone, and although I don’t always show it, I really love company. What is also very important for me, is a well-structured day. What to do when social interaction is actively discouraged and I’m not allowed to go to work every day?
I have come up with several ways to deal with these things, and I have the idea (or hope?) that others might benefit from them as well. That’s why this blogpost will be the first in a series of posts about strategies to cope with the quarantine situation. I know that the situation is far worse in other places, but I hope that perhaps my strategies also work for others.
Since my early childhood, I’ve been a bit of a fanboy of Alexander the Great. I had a poster of him in my bedroom and I knew the names of all the battles he had fought and cities he had conquered. My passion for Alexander has not become less over the years: I have visited many places where Alexander has once been, and in my bedroom there is now a map of his expedition.
In these times of quarantining, one of my ways to cope with the loneliness is curling myself up in a warm easychair and start reading a book about the history of Alexander the Great. So much is written about his expedition, that I never have any trouble finding a book about Alexander which I haven’t read yet (when I heard about the new semi-lockdown yesterday, I immediately mail-ordered W.W. Tarn’s 1948 classic ‘Alexander the Great’).
To optimise my Alexander-experience, I set my phone to ‘do not disturb’ for 60 minutes. I choose appropriate background music (The Kaiser Chiefs for Alexander’s youth; Wagner for Alexander’s return-journey), while I surround myself with dictionaries and (historical) atlasses that might assist me when Alexander’s expedition is under way. Sometimes I put a poster up with a detailed map of the territory involved, so that I can really follow the development of the story. All these things together really help me get my mind off things that are happening around me.
I think a similar strategy could work for ‘Lord of the Rings’, ‘Game of Thrones’, stories about ‘Donald Duck’ or ‘Mickey Mouse’ (combine this with Stravinsky!), or perhaps also with romantic literature (Tolstoy with Tchaikovski?). But be sure to think it through! The strategy only has effect if you are doing things in an unusual way. Try to make a real ritual out of it: move your armchair to the centre of the room every afternoon at four o’clock sharp, put on the music, turn off your phone, and dive into your fantasyworld for 60 minutes!
wrap up:
Do you have another strategy to get through the corona-crisis? let me know by posting below!
[also: don’t forget to subscribe to this blog (fill in your emailaddress in upper right corner) to find out more about my coping strategies ;)]
Het is dan eindelijk zover: vanaf deze week ligt mijn boek “Op zoek naar de grenzen van de natuurkunde” in de boekhandel! Door het gedoe rondom corona zal er geen officiële boekpresentatie plaatsvinden, maar dat betekent natuurlijk niet dat de publicatie geruisloos voorbij gaat. Via Twitter, Instagram, Facebook en LinkedIn zullen jullie veel van me horen de komende tijd. Als voorproefje hieronder vast een ongepubliceerd hoofdstuk uit een eerdere versie van het boek.
Het hoofdstuk gaat over de natuurkunde van Isaac Newton, die wordt beschouwd als een van de grondleggers van de moderne wetenschap.
Toen ik aan de universiteit van Utrecht sterrenkunde studeerde, vertelde onze docent over een foutje dat zijn secretaresse enkele jaren eerder gemaakt had. Op de doctorandesbul van een de studenten van onze docent stonden de woorden “doctorandus in de astrologie”, in plaats van de “doctorandus in de astronomie.” Vanaf dat moment ging de grap rond dat er in heel Nederland maar één universiteit is waar je een doctorandus-titel in de astrologie kunt krijgen.
Waarom noemen we astronomie een wetenschap, terwijl we astrologie – de overtuiging dat de stand van de sterren invloed heeft op menselijk handelen – beschouwen als pseudo-wetenschap? En hoe dacht Newton daarover? Laten we ons eerst richten op de eerste vraag: waarom is astrologie geen echte wetenschap? Het standaardantwoord is dat de uitspraken van astrologen vaak zó vaag en multi-interpretabel zijn dat ze niet met behulp van experimenten kunnen worden weerlegd.
Uitspraken van astrologen zijn vaak vaag, terwijl de meeste astrologische uitspraken niet weerlegbaar zijn. ‘Vaak’, ‘de meeste’, …zijn er dan ook gevallen waarin astrologie wel wetenschap is? Er is een tweede reden waarom velen astrologie onwetenschappelijk vinden: het ontbreken van een mechanisme dat beschrijft hoe astrologie werkt. Als een astroloog bijvoorbeeld een verband ziet tussen de stand van de sterren tijdens iemands geboorte en het feit dat de geborene graag appels eet, dan is het niet duidelijk hoe de sterren invloed op de persoon in kwestie kunnen hebben gehad. Het is niet duidelijk hoe de correlatie tussen de sterrenstand en de geboorte een oorzakelijk verband met zich meebrengt. Deze kritiek op astrologie hangt samen met het begrip lokaliteit.
We zien om ons heen dat objecten invloed op elkaar kunnen uitoefenen als ze elkaar raken (zoals botsende biljartballen). Als we zien dat een object plotseling versnelt of vertraagt, dan gaan we ervan uit dat deze werking wordt veroorzaakt door iets dat het object raakt; we gaan ervan uit dat alle beïnvloeding lokaal (plaatselijk) is. Als er een afstand is tussen het object dat versnelt en het object dat deze versnelling veroorzaakt, dan gaan we ervan uit dat we iets missen van wat er gaande is. Astrologische invloed – de invloed van de stand van de sterren op menselijk handelen – is niet-lokaal, waardoor astrologie heel sterk het gevoel oproept dat we iets missen.
Laten we nu eens kijken naar Newtons werk. Iets dat vaak over Newton gezegd wordt is dat hij astroloog, alchemist en dogmatisch religieus was, maar desondanks gedegen wetenschappelijk werk verrichtte. Is dat wel zo? Zijn wet van de traagheid stelt dat een object waarop geen krachten werken voor altijd op dezelfde manier door zal bewegen (zonder wrijving zou een bal voor altijd verder blijven rollen). Maar hoe is dat te toetsen in een experiment? We moeten dan van een object waarop geen krachten werken nagaan of het steeds even snel blijft gaan, maar dat kan helemaal niet: Op ieder object werken altijd krachten (denk alleen maar eens aan de gravitatiekracht van degene die het object bestudeert)! De wet van de traagheid is niet te weerleggen, omdat de wet gaat over een situatie die we niet in een experiment kunnen nabootsen.
Naast de wet van de traagheid is de zwaartekracht een erg belangrijk onderdeel van Newtons theorieën. Newton zelf zegt dat zwaartekracht een werking-op-afstand veroorzaakt: de aarde en de maan trekken elkaar aan, terwijl er een grote afstand tussen de twee is. Ook dat is verre van wat we tegenwoordig gedegen wetenschap noemen. Net als bij de astrologie is de beïnvloeding niet lokaal, en dus krijgen we weer het gevoel dat we iets missen. Hoe kan Newtons zwaartekracht een niet-lokale werking hebben? Voor alle duidelijkheid: Newton zegt dat er een relatie is tussen de stand van de maan en vallende stenen hier op aarde (beide veroorzaakt door de zwaartekracht), en stelt dat een of andere occulte en mysterieuze kracht die relatie veroorzaakt. Hoe is dat anders dan astrologie?!
Als we Newtons theorieën bekijken in het licht van weerlegbaarheid en lokaliteit, dan komen we tot de verbazende conclusie dat Newton zich altijd met astrologie heeft beziggehouden. Hoe werd er door Newtons tijdgenoten over dit soort zaken gedacht?
De tijd van Newton (eind 16e en begin 17e eeuw) was de tijd van de Wetenschappelijke Revolutie. Het was een tijd van vernieuwing, niet alleen wat betreft de inhoud van de wetenschap (zoals de wetten van Newton), maar ook wat betreft de wetenschappelijke methode. De ideeën die we hadden over wat telt als echte wetenschappelijke kennis, en hoe we aan deze kennis kunnen komen, veranderden radicaal. Zo werd bijvoorbeeld de waarde die werd gehecht aan (reproduceerbare) experimenten erg groot (denk aan Galileï’s experimenten).
De toneelstukken van Jean-Baptiste Poquelin, beter bekend onder zijn artiestennaam Molière, illustreren deze veranderende tijdgeest. In zijn laatste toneelstuk, ‘Le Malade Imaginaire’ (‘De Ingebeelde Zieke’), steekt Molière de draak met doktoren van de oudere generatie (van vóór de Wetenschappelijke Revolutie), die de slaapverwekkende werking van een medicijn verklaren door te zeggen dat het medicijn een slaapverwekkende kracht, een ‘virtus dormitiva’, heeft. De onderliggende gedachte van Molière is dat doktoren met hun ‘slaapverwekkende kracht’ eigenlijk niets anders doen dan verdoezelen dat ze geen idee hebben waarom het medicijn werkt door een moeilijke Latijnse naam voor ‘slaapverwekkende werking’ te geven: ‘dormire’ is Latijn voor slapen en ‘virtus’ is het Latijnse woord voor kracht – zeggen dat een slaapwekkende werking wordt veroorzaakt door een ‘vitus dormitiva’ is dus allesbehalve een verklaring.
Had Molière aan Newton niet eenzelfde soort verwijt kunnen maken? Newton stelde dat alle massa’s elkaar aantrekken, en dat daarom massa’s ‘zwaar’ zijn. De aantrekkende werking wordt veroorzaakt door een onzichtbare ‘zwaartekracht’ waarover Newton niet verder wilde speculeren. Newton gebruikte het Latijnse woord voor zwaar (‘gravitas’) om zijn kracht te benoemen. Doet hij niet precies hetzelfde als de doktoren van Molière – het kiezen van een dure Latijnse naam om te verdoezelen dat hij geen idee heeft van waarom dingen gebeuren zoals ze gebeuren? …”
Wil je hier meer over lezen, of ben je benieuwd wat Einstein hierover te zeggen heeft?
In mei gaat Prometheus mijn boek “Op zoek naar de grenzen van de natuurkunde” publiceren. Een mooie kans om al je zorgen even van je af te zetten en helemaal op te gaan in diepe gedachten over wetenschap en filosofie. Zet Netflix even op pauze, en kijk vast naar het lijstje hieronder, met de termen die in de index (‘zakenregister’) komen. De komende weken ga ik meer bloggen over mijn boek, dus abonneer je op mijn blog door je e-mailadres in te vullen op de startpagina (bij: Follow Blog via Email).
Alice in wonderland
Gerard ‘t Hooft
bewegingswetten
natuurwetten
model
werkelijkheid
rekenmachine
Narcissus
waarneming
subatomair deeltje
normale verdeling
gemiddelde
meetverstoring
cern
meetfout
higgsdeeltje
deeltjesversneller
standaardmodel
Newtons vallende appel
Einstein
Zwaartekracht, universele
Archimedes
Galileï, inquisitie
Stukeley
Relativiteitsbegrip
Relativiteit, Einstein
Relativiteit, Galileï
Grootheid, absoluut/relatief
Postulaat
Bewegingswetten van Newton
Waarnemer
Parabool
Galileï, schip
Constante snelheid
Versnelling
Traagheidskracht, ontstaan
Assyriërs
Atomen
Demokritos
Leukippos
Coördinatenstelsel
Functie
Coördinatenstelsel, oorsprong
substantivalisme
Ruimte, absolute
tijd, absolute
Snelheid, absolute
Ordening, absolute
Ruststelsel
Rust, absolute
Versnelling, absolute
Versnelling, relatieve
Traagheid
Impuls
Massa
Vector
Gewicht
Wetten van Newton
Traagheidswet
Wrijving
Krachtwet
Oneindig
Impulsbehoud, principe van
zwaartekrachtswet
werking-op-afstand
gravitatieconstante
G (zie: gravitatieconstante)
Cavendish
Jan Klaassenspel
Onderbepaaldheid
Celsius
Fahrenheit
sociaal construct
Latour, Bruno
Puntdeeltjes
Atomen, botsen/kruisen
Ontelbaar
Singulariteit
Hilbert, David
Leibniz, Gottfried Wilhelm
Informatie kopieren
Popper, Karl
Theoriegeladen
Lineaire samenhang tussen variabelen
Galileï, experiment Pisa
vrije val
equivalentie van zwaartekracht en traagheidskracht, bij Newton
energie, kinetische
energie, potentiële
hoogtekaart
veld
potentiaalveld
Lagrange, Joseph-Louis
Gps
kleinste werking, Het principe van de
mozaïek
Hawking, Stephen
Tijd als verandering
tijdsymmetrisch
Boltzmann, Ludwig
Clausius, Rudolf
Entropie
Wanorde
Tijdrichting
Evenwichtstoestand
Equilibrium, zie: Evenwichtstoestand
kans, entropie en
ruimte als relatie tussen objecten
standaardmaten
relativiteitstheorie, Einsteins algemene
relativiteitstheorie, Einsteins speciale
lengtecontractie
ruimtetijd
AltaVista
‘Over de elektrodynamica van bewegende lichamen’
Elektrodynamica
Veld, magnetisch
Veld, elektrisch
Geleider
magneet
Maxwell, wetten van
Kracht, elektromagnetische
gedachte-experiment
snelheid, ten opzichte van de absolute ruimte
snelheid, relatieve
lichtsnelheid, voor iedereen hetzelfde
lichtsnelheid, absolute
tijdsdilatatie
lichtklok
gamma (γ)
Lorentz, Hendrik Antoon
Synchronisatieprobleem
Gelijktijdigheid
Skype
Relativiteitspostulaat
Lichtpostulaat
Beschrijving/model
Mechanica, klassiek
Mechanica, van Newton (zie: Mechanica, klassiek)
Equivalentie van zwaartekracht en traagheidskracht, bij Einstein
Equivalentie, Einsteins principe van
Kuipers, André
kromming van ruimte en tijd
ruimtetijd
Eddington, Sir Arthur Stanley
Afbuiging, licht-
Foton
Langeafstandswerking (zie: werking-op-afstand)
Lokaal
Ligo
Zwaartekrachtsgolven
Zwart gat
Gauss, Carl Friedrich
180 graden-regel
Rovelli, Carlo
Scheermes, van Ockham
Cox, Brian
Maudlin, Tim
kwantumgravitatie
Kwantumtheorie
Unificatie
Wheeler-DeWitt-vergelijking
Tijd, als illusie
Snaartheorie
Laplace, Pierre-Simon
Kans, Laplace’s definitie
Kans, het principe van gelijke
Kans als relatieve frequentie van uitkomsten
Aristoteles
Elektronenmicroscoop
‘Metaphysica’
diepte zien
kracht, middelpuntvliedende
Franse revolutie
Dainton, Barry
Looney Tunes
When I started writing this blogpost a week ago, I wrote this: “When times are as difficult and unpredictable as they are today, I find comfort in mathematics. No matter how things turn out, how many more difficulties come our way, we may be certain that mathematics stays the way it is* – it is our indestructable beacon of rationality. In this blogpost I want to share with you some of the comfort that mathematics gives to me.”
But the longer I think about these things, the more I realise that it is not this comfort that I want to share. I realise that when I am at home alone, sitting in my ‘internest’, writing this blog, I forget about all the trouble around me. I stop worrying about the coronavirus or about my recent divorce. Mathematics makes me happy, that’s what I want to share!
Just like me, the followers of Pythagoras in the sixth century BC really loved their numbers. When one of them discovered that there are numbers, like √2, which you can’t write out in all their decimals, because they have infinitely many of them (√2=1.41421356237…), the other Pythagoreans threw the poor fellow into the sea. But his death hasn’t helped. Numbers with infinitely many decimals exist, and √2 is one of them.
To prove that √2 has infinitely many decimals, we must show that it can’t be written as the division of two whole numbers – that √2 is an irrational number (so-called because it is not the ratio between two whole numbers).
If mathematical proof isn’t your favourite pass-time (not even in quarantine) then perhaps you should skip to the paragraph ‘Hamlet’s nutshell’.
The proof that √2 is an irrational number is a proof by contradiction. We assume that the opposite of what we want to prove, the statement “√2 is the ratio between two whole numbers”, is true, and from that we derive a contradiction, so that we know that the assumption that we started with is false.
So we start with the assumption that √2 is the ratio between two whole numbers. Let’s begin by writing the ratio in terms of its smallest divisors, the lowest values of m and n for which the ratio stays the same (so that 3/6 becomes 1/2, 5/15 becomes 1/3 and 2/1200 becomes 1/600). Let’s call these smallest divisors m and n. To derive the contradiction that we need for our proof, we will show that the m and the n that go into √2 are even numbers, which means that is not the ratio between two smallest divisors (because both terms in the ratio can be divided by two). But the assumption that we started with is that m and n are the smallest divisors, so if our reasoning is correct, our starting assumption must be wrong.
Let’s begin with this:
square both sides to get
then multiply both sides by to get
If m and n are arbitrary whole numbers, then so are and
. So if
is equal to some arbitrary whole number multiplied by two,
must be an even number (because any number multiplied by 2 is an even number). Ok, so we know that
is even, but what about m? Is m also even, if
is even? m appears in our equation in its squared form, but whatever the value of
, there are only two possibilities: m is either even or odd (mathematicians like stating the obvious). But how does that help us? How can we explore these two possibilities?
We’re going to use a little trick here: we know that a number is an even number if it can be divided by 2, so if m is an even number, we may write , where k is again some arbitrary number. Think about it. If some arbitrary number is one of these “1, 2, 3, 4, 5…” then two times that number is in the list “2, 4, 6, 8…”. This gives us a list of even numbers, but how do we get to the odd numbers? The second part of our trick is to add 1 to every number in the list of even numbers, so that we get a list with odd numbers (“3, 5, 7, 9…”), so we know that we can write any odd number as
. Try it yourself, fill in “2, 4, 6, 8…” for k in
and you get “3, 5, 7, 9…”.
Back to our two possibilities. We know that is even, but what about m? Is m even or odd? Where do these possibilities lead us?
If 1: m is even, we know that for an arbitrary k, so that
, which is again an even number because it is divisible by two. We now know that
is consistent with
and m being both even.
If 2: m is odd, then we may write for some arbitrary number k, so that
. This expression has the form “even number + 1”, because
is even, so
must be odd. We see that the second possibility leads to saying “if m is odd, then
is also odd.”
Before we started talking about the two possibilities, we asked “what can we say about m if we know that is even?” We see that assuming that m is odd leads to an
which is odd, so possibility 2 is not a possibility at all! The only remaining option is possibility 1: if
is even, then m is also even.
Are we there yet? We started this blogpost by saying that it is impossible that if m and n are smallest divisors because
implies that m and n are even, but we haven’t shown that yet. We know that from
it follows that both m and
are even, but what about n? Let’s use our ‘little trick’ again. Since we know that m is an even number, we may write
. We also know that
, which gives us
. Divide both sides by 2, and we see that
, which tells us that
is an even number. We know from our earlier reasoning that if the square of an arbitrary number is even, then so is the number itself (if
is even then m is even). We just showed that
is even, so n itself must also be even.
Phiew! We have finally reached the contradiction. Both m and n are even, so they are not the smallest divisors in . This contradicts our starting assumption, so that assumption must be false, so √2 is not a rational number.
Q.E.D.**
Something keeps nagging, though. We have shown that both m and n are even, which tells us that m and n are not the smallest divisors in , but what does that tell us? We assumed that they were smallest divisors, and that’s why there was a contradiction. What if we don’t make this assumption? What if we assume that there are numbers m and n such that
, for some m and n that are not the smallest divisors in
?
What we should realise is that both m and n could be any number, so if we say , then this equation must hold for all choices of m and n, including the choice where m and n are smallest divisors. m and n being the smallest divisors is not an extra assumption – it is part of the assumption that m and n are arbitrary numbers.
Can’t we make a claim about √2 that is a bit weaker? What if we say that m and n are numbers for which does not have smallest divisors? Will that allow us to say that √2 is a ratio between whole numbers?
Nice try, but it won’t work. Or rather, it works, but then the m and n that go into √2 are not numbers as we know them. Take any pair of positive, whole numbers, and make a rational number out of them . Depending on the choice you make, it is either possible to divide both n and m by some other number (so that, for example,
becomes
, and
becomes
) or you can’t do that, in which case you have the smallest divisors (
,
,
). The possibility left for m and n that neither have nor are smallest divisors of √2, is to choose for m and n some trans-finite numbers, such as
, which represents, among other things, the cardinality of the set of all integers. But the moment we start talking about trans-finite numbers, we leave the realm of the real and the rational numbers. The ratio which trans-finite numbers can give us is not a rational number.
It makes me a bit dizzy when I start thinking about trans-finite numbers (if you’ve skipped the proof, just believe me when I say that trans-finite numbers are stranger than fiction). Math-induced dizziness is a pleasant dizziness, much as that due to a glass of whisky. It reminds me of something that Shakespeare’s Hamlet says:
“I could be bounded in a nutshell, and count myself a king of infinite space”
No matter what happens, no matter what comes our way or how isolated I become, in my mind I can instantly travel to the farthest reaches of human understanding. Simply by following the rules of logic.
*) which is not to say that it’s impossible that mathematicians discover new theorems or new mathematical relations. What I mean is that mathematics, as logical reasoning about numbers, will continue, no matter what.
**) Nerd-speak for ‘I told you so’. Also sometimes “quod erat demonstrandum” (Latin for ‘…which needed to be proved’)
My wife has decided that she wants to split up with me, so I have moved back to my old home in Utrecht (the Netherlands). I am very sad, because I really saw a future for us together in Sweden, and writing this actually brings tears to my eyes. When I am as sad as I am now, I often try to think of Monty Python’s song ‘Always look on the bright side of life’. But this time that thought provides little comfort, because ‘Always look on the bright side of life’ is the song that was played during our marriage ceremony, so the song reminds me of her smiling and singing.
Having said that, I think there is a lot of brightness awaiting me. I have started teaching a course on electromagnetism at a university in Amsterdam, I’m writing a popular book on relativity theory which will appear in May (with a foreword written by Nobel prizewinner Gerard ‘t Hooft), and the Dutch climbing & mountaineering federation has made me Dutch paraclimbing ambassador!
And what about Sweden? I’m not letting go of my mission to spread paraclimbing in Scandinavia. In October I have given a talk about paraclimbing in Norway, and at the end of April there will be a sports camp in Sweden, where a wide variety of parasports (adaptive sports) are represented. I have been invited by the Swedish climbing federation to come and represent paraclimbing. You haven’t heard the last of me yet!
Dutch open nationals, Sittard; November 2019
I have great news! No, I’m not pregnant, I’m moving to Sweden. My wife accepted a job as a teacher at an international school in Älmhult (near Malmö), so from August 1 I’ll be driving my tricycle in Viking-country.
One remark before I tell you more about my plans for Sweden: this will be my last blogpost on paraklimmer.wordpress.com; from now on I’ll only post on my English paraclimbing website so follow this link, and click ‘Follow Blog via Email’ to keep getting updates!
What am I going to do in Sweden? I’m going to continue my job as an editor for a journal in physics (Foundations of Physics) and I’ll continue to do research in the philosophy of physics at the Linnaeus University in Växjö.
And what about the climbing? Will that come to an end?
Of course not! I’m going to start a new chapter of my mission – to spread the word about paraclimbing. When I started paraclimbing in the Netherlands three years ago, there was only one other paraclimber, now there’s eight of us (see image below). At the moment there are only two paraclimbers in Sweden, that will change!
But before I move to Sweden, there are two things that I have to take care of:
De organisatie van het WK paraklimmen 2019 heeft bekend gemaakt dat het WK dit jaar toch niet in Tokio zal zijn. Het wordt gehouden in Briançon (Fr), en niet in augustus, maar op 16/17 juli. Ik vind dat jammer en vervelend: jammer omdat ze in Tokio waarschijnlijk maar weinig blonde Friezen te zien krijgen; en vervelend omdat mijn trainingsplanning nu in de soep loopt.
Maar wat dit alles volgens mij nog het duidelijkst laat zien is dat paraklimmen nog niet ‘één van de grote jongens’ is: ik kan me moeilijk voorstellen dat het WK voetbal zo kort van tevoren een maandje en 1000 km wordt verplaatst. Het is dus wel duidelijk dat mijn missie – ervoor zorgen dat paraklimmen serieuzer, groter en bekender wordt – nog in de kinderschoenen staat.
Op dat front is trouwens ook succes geboekt. Toen ik in 2015/16 begon met paraklimmen, bestond het Nederlandse paraklimteam uit twee personen. Inmiddels zijn we met veel meer (we hebben zelfs alweer een nieuw teamlid dat niet op de foto staat; binnenkort meer daarover):
Heb je zelf een handicap en zou je graag een keertje mee willen trainen, of ken je iemand die daar misschien in geïnteresseerd zou zijn? Schrijf je hier in voor de open training op 8 mei bij Mountain Network Nieuwegein.
Voor wie niet iedere dag RTV Utrecht kijkt: ze hebben een reportage over me gemaakt (klik hier)!